Performance Benefits for Organic Rankine Cycles with Flooded Expansion
نویسندگان
چکیده
An organic Rankine cycle (ORC) is often used in waste heat recovery applications. These are typically small-scale applications where cycle thermal efficiency is low, and the benefits of traditional cycle enhancements (such as reheat stages or feed-water heaters) do not typically outweigh the costs required to implement them. An ORC with flooded expansion and internal heat regeneration is an alternative enhancement that provides comparable benefits at reduced cost and complexity. The improvement in efficiency for the ORC with flooded expansion and internal regeneration is analyzed for several working fluids and for two flooding media: water and Zerol 60 compressor lubricant. It is shown that internal regeneration alone provides most of the efficiency enhancement for dry working fluids (R600a, n-Pentane, and R245fa). n-Pentane is shown to offer the most efficient cycle even without flooded expansion in most cases. A quantitative comparison is given between the proposed cycle and the reheat and feedwater heater cycles with internal regeneration. In applications where a hydrocarbon may not be appropriate as a working fluid, R245fa and R717 show promise as alternatives. R717, which shows the most benefit from flooded expansion and internal regeneration, requires this enhancement in order to be competitive with the dry working fluids.
منابع مشابه
Thermodynamic Comparison of Organic Rankine Cycles Employing Liquid-Flooded Expansion or a Solution Circuit
متن کامل
Thermodynamic Analysis and Optimization of a Novel Cogeneration System: Combination of a gas Turbine with Supercritical CO2 and Organic Rankine Cycles (TECHNICAL NOTE)
Thermodynamic analysis of a novel combined system which is combination of methane fired gas turbine cogeneration system (CGAM) with a supercritical CO2 recompression Brayton cycle (SCO2) and an Organic Rankine Cycle (ORC) is reported. Also, a comprehensive parametric study is performed to investigate the effects on the performance of the proposed system of some important parameters. Finally, a ...
متن کاملImprovement of Overall Efficiency in the Gas Transmission Networks: Employing Energy Recovery Systems
This study mainly focuses on enhancing the overall efficiency of gas transmission networks. The authors developed a model with detailed characteristics of compressor and pressure reduction stations. Following this, they suggested three different systems with gas turbine including: organic rankine cycle (ORC), air bottoming cycle (ABC), and ABC along with steam injection (SI-ABC). In addition, u...
متن کاملتحلیل انرژی-اگزرژی و مطالعۀ پارامتری بازیابی گرمای اتلافی پیکربندیهای مختلف سیکل توربین گاز با استفاده از سیکل رانکین آلی
Since ordinary gas turbine cycles in actual condition comprise simple cycle, regenerative cycle, reheat cycle and intercooler cycle between high pressure and low pressure compressors, these cycles include 16 combined cycles by combining with a Rankine cycle that consists of three organic fluids and steam. In the present work, the thermodynamic analysis of the above combined cycles with three or...
متن کاملThe energy and exergy analysis of a novel cogeneration organic Rankine power and two-stage compression refrigeration cycle
The energy crisis in recent years has led to the use of thermodynamic cycles that work based on renewable energies. Low-temperature cycles—such as organic cycles—are suitable strategies for the application of renewable energies. The present study proposes a novel cycle through the integration of a two-stage compression refrigeration cycle with a combined Rankine power and ejector refrigerat...
متن کامل